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Abstract

Multi-modal fusion has played a vital role in multi-modal scene understanding.
Most existing methods focus on cross-modal fusion involving two modalities, often
overlooking more complex multi-modal fusion, which is essential for real-world
applications like autonomous driving, where visible, depth, event, LiDAR, etc.,
are used. Besides, few attempts for multi-modal fusion, e.g., simple concatena-
tion, cross-modal attention, and token selection, cannot well dig into the intrinsic
shared and specific details of multiple modalities. To tackle the challenge, in
this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For
the first time, this framework treats multi-modal fusion as part-whole relational
fusion. It routes multiple individual part-level modalities to a fused whole-level
modality using the part-whole relational routing ability of Capsule Networks
(CapsNets). Through this part-whole routing, our PWRF generates modal-shared
and modal-specific semantics from the whole-level modal capsules and the routing
coefficients, respectively. On top of that, modal-shared and modal-specific details
can be employed to solve the issue of multi-modal scene understanding, includ-
ing synthetic multi-modal segmentation and visible-depth-thermal salient object
detection in this paper. Experiments on several datasets demonstrate the supe-
riority of the proposed PWRF framework for multi-modal scene understanding.
The source code has been released on https://github.com/liuyi1989/PWRF.

Keywords: Multi-modal fusion, Part-whole relational fusion, Capsule network,
Synthetic multi-modal semantic segmentation, VDT salient object detection
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1 Introduction

Due to the limited perception ability of single sensor, multiple sensors help to cap-
ture different fields of perception, e.g., depth, thermal, and LiDAR [1–5]. Naturally,
multi-modal fusion plays a fundamental role in multi-sensor scene understanding, with
applications ranging from synthetic autonomous driving perception [2, 6] to unmanned
aerial vehicles [7].

Previous multi-modal fusion methods mostly lie in the cross-modal combinations
[8–10], which aim to find the complementary details in different modalities to enhance
individual representations. Despite these methods have advanced the progress of multi-
modal fusion, they largely concentrate on specific sensor pairs and lack behind the
current trend of fusing multiple modalities [11]. In contrast, the noise and misalignment
of multi-modal sensors pose significant challenges for fusing more modalities, such as
triple-modal fusion, which is crucial for many autonomous driving applications.

Fig. 1: Comparison of different multi-modal fusion methods. (a) Multi-modal fusion
via concatenation. (b) Multi-modal fusion through parallel cross-attention to attend
the primary modality. (c) Multi-modal fusion via selection mechanism. (d) Our multi-
modal fusion via part-whole relational routing to generate modal-shared and modal-
specific details.

Within the scope of multi-modal fusion1, there are a few approaches towards this
field, as shown in Fig. 1. For example, Fig. 1(a) explores the triple-modal fusion
using a simple concatenation [12]. Fig. 1(b) uses parallel cross-attention mechanism to
attend the primary modality [13]. Fig. 1(c) selects the informative-modal token from
three modalities as the fusion result [11, 14]. To sum up, the existing multi-modal
fusion approaches mostly combine the important details from multiple modalities using
attention [11, 13] or select the most important modality for each patch using a maxi-
mum criteria [14]. Albeit some progress, these methods still encounter challenges for

1In this paper, multi-modal fusion focuses on triple-modal fusion instead of cross-modal fusion.
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arbitrary-modal fusion. First, attention-based fusion methods [11, 13] focus on iden-
tifying important details rather than capturing intrinsic knowledge among multiple
modalities, including shared and specific knowledge, thus lacking intrinsic fusion effec-
tiveness. Secondly, some methods discard many supplementary modalities, e.g., the
informative modal selection method [14], which can cause performance degradation in
scenarios requiring the fusion of more modalities.

To tackle the issue of the multi-modal fusion, we explore an alternative fusion,
called Part-Whole Relational Fusion (PWRF), which treats the relationships between
individual modality and the fusion modality as relationships between each part-level
modality and the whole-level modality. In such sense, the solution of multi-modal
fusion involves routing part-modalities to the whole-modality, which can be achieved
through the part-whole relational routing within the framework of Capsule Network
(CapsNets) [15]. To this end, considering the heavy computation of CapsNets, we
opt for a lightweight version [16], named Disentangled Capsule Routing (DCR), to
routing the part-modality to whole-modality. Concretely, DCR begins by disentangling
part-level modal capsules from each single modality along the horizontal and vertical
dimensions, which are fed into capsule routing mechanism to generate horizontal and
vertical whole-level modal capsules. These orthogonal capsules are entangled to achieve
the whole-level modal capsules. Thanks to the primitive fusion of PWRF in Fig.
1(d), modal-shared and modal-specific semantics, which are two vital fusion semantics
in the issue of multi-modal fusion [17], are included. To be concrete, modal-shared
semantics are represented by the whole-level modal capsules, generated by exploring
common properties across different individual modalities. Modal-specific semantics for
each modality are computed via the routing coefficients from each part-level modality
to the whole-level modality, reflecting the associations between each single modality
and the fused version.

To explore the potential of the proposed PWRF for multi-modal scene under-
standing, we select two fundamental tasks to validate its superiority: Synthetic
Multi-Modal (SMM) semantic segmentation [14] and Visible-Depth-Thermal (VDT)
salient object detection [12]. Synthetic Multi-Modal (SMM) semantic segmentation
[14] and Visible-Depth-Thermal (VDT) salient object detection [12] are chosen due
to their complementary focus areas in multi-modal scene understanding. Specifically,
SMM semantic segmentation is concerned with segmenting various semantic classes
in multi-modal input, which includes visible, depth, event, and LiDAR data, thereby
enhancing detailed scene understanding by leveraging the strengths of each modality
for comprehensive semantic representation. In contrast, VDT salient object detection
is a crucial task in autonomous driving and robotic navigation, where the primary focus
is to identify the most salient objects in challenging multi-modal settings involving
visible, depth, and thermal data. This task is essential for applications that priori-
tize real-time decision-making, especially under adverse or uncertain conditions where
identifying key objects becomes critical for effective scene understanding. Inspired
by the above concerns, these two tasks provide a holistic evaluation of the proposed
PWRF framework for the issue of multi-modal scene understanding. Concretely, SMM
segmentation assesses the capability of the framework to understand and represent
detailed semantic aspects of the scene, while VDT saliency detection focuses on the
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ability to extract and prioritize critical information. The integration of both tasks
showcases the versatility of our approach in tackling different facets of multi-modal
scene understanding, thus demonstrating its generalizability and robustness across var-
ied application scenarios. Experiments on SMM semantic segmentation [14] and VDT
salient object detection [12] datasets prove the superiority of the proposed PWRF
framework for multi-modal scene understanding.

Contributions of this paper are described as follows:
(i) We propose a PWRF framework for multi-modal scene understanding, which,

to the best of our knowledge, is the first to treat multi-modal fusion as the part-
whole relational fusion. Under this framework, we can obtain modal-shared and modal-
specific details using the whole-level modality and routing coefficients, respectively,
which can be further employed to enhance multi-modal scene understanding.

(ii) To apply PWRF for SSM semantic segmentation, we design a shared-specific-
integration module that fuses modal-shared and modal-specific details to detect
semantic objects in synthetic multi-modal scenarios.

(iii) In order to configure PWRF for VDT salient object detection, we design a
stacking adjacent-scale attention decoder to integrate modal-shared and modal-specific
details, which is experimentally proved to be superior to detect the salient objects in
the visible-depth-thermal environment.

The paper is organized as follows. Sec. 2 reviews the works related to the proposed
method. Sec. 3 details the proposed PWRF framework. Sec. 4 illustrates the architec-
tures for SMM semantic segmentation and VDT salient object detection using PWRF.
Sec. 5 carries out abundant experiments and analyses to understand the proposed
method. Sec. 7 provides a conclusion for the paper.

2 Related work

In this section, we will review the works related to our method, including multi-modal
semantic segmentation, multi-modal salient object detection, and CapsNets, which
will be described in detail in the following.

2.1 Multi-modal semantic segmentation

Semantic segmentation has been a fundamental task in the computer vision community
since fully convolutional networks [18] revolutionized its development. Unlike RGB-
modal semantic segmentation [19–21] that relies on RGB modality, which may suffer
from sensor limitations, multi-modal semantic segmentation enhances scene perception
by incorporating multiple modalities, e.g., depth, events, and LiDAR. For example,
Hazirbas et al. [22] leveraged the rich color and texture from RGB modality, and geo-
metric and structural information from depth modality, for semantic segmentation.
Wang et al. [23] proposed to extract common and modality-specific features from RGB
and depth images to improve semantic segmentation accuracy for indoor scenes. Wang
et al. [11] proposed a multi-modal token fusion method through substituting uninfor-
matie tokens with important ones. Wang et al. [24] dynamically exchanged channels
between sub-networks of different modalities for multi-modal fusion. Zhao et al. [25]
presented a coarse-to-fine fusion mechanism for LiDAR-camera semantic segmentation
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by leveraging the low-level contextual information and designing an offset correction.
Liu et al. [26] fused camera and LiDAR modalities in a bi-directional manner. Liang
et al. [27] derived a region guided filter to select informative combinations of multiple
modalities classes. Zhang et al. [28] utilized a cross-modal feature correction module
to enhance complementary information and a feature fusion module to achieve full
fusion and long-distance context exchange. Based on this, they subsequently presented
a cross-modal segmentation model [14] by fusing the primary modality and selected
informative auxiliary modality.

Most of the previous methods focus on fusing complementary cues [11] or selecting
informative one modality while discarding the others, which can lead to performance
degradation due to a lack of intrinsic integration. Differently, we treat multi-modal
fusion as part-whole relational fusion that routes part-level modalities to whole-level
modality, thus enabling the capture of primitive fusion and generating shared and
specific details.

2.2 Multi-modal salient object detection

Unlike RGB salient object detection [29–33], which often severely struggles challenging
scenarios such as cluttered background and high similarity between salient objects
and their surroundings, multi-modal learning can enhance saliency understanding in
these difficult conditions. The most popular multi-modal salient object detection lies in
RGB-D and RGB-T saliency, which detect the salient objects from the RGB & depth
and RGB & thermal data, respectively, via cross-modal fusion. For example, Wu et al.
[34] proposed a multi-level and multi-scale fusion scheme to fuse RGB-depth features
for saliency prediction. Li et al. [35] designed a boundary-aware fusion framework
for RGB-D salient object detection. Xie et al. [36] developed a double bi-directional
interaction network for RGB-D saliency detection. Zhang et al. [37] utilized saliency
prototypes of the primary modality to enhance semantics of the auxiliary modality,
followed by allocating dynamically weighs for auxiliary modality during fusion stage.
Different from RGB-D and RGB-T salient object detection, the VDT salient object
detection tackles the problem of salient object in the environment of the visible, depth,
and thermal images. To solve the challenge, Song et al. [38] utilized an attention
mechanism to parallelly fuse the primary modality and the auxiliary modality for
triple-modal salient object detection. This approach highlights an innovative method
for complementary aggregation of triple-modal information. Wan et al. [12] proposed
a triple-modal fusion encoder and a progressive feature enhancement decoder for VDT
salient object detection. They further designed a triple-modal interaction encoder and
a multi-scale fusion decoder for VDT salient object detection [39]. Bao et al. [40]
developed a quality-aware selective fusion network for VDT saliency detection.

Different from the existing VDT salient object detection that cannot explore
the modal-shared and modal-specific semantics, our PWRF framework can explore
the associations between triple modalities to find modal-shared and modal-specific
semantics for further saliency prediction.

5



2.3 CapsNets

Unlike convolutional neural networks that intend to capture the discriminative fea-
tures, CapsNets target at capturing part-whole relations to find the targets. The
classical CapsNets, i.e., vector CapsNets [41] and matrix CapsNets [15], have been
known large-scale parameters and heavy computation. To achieve lightweight Cap-
sNets, a lot of efforts have been devoted. For example, a prediction tuning framework
was proposed to allow a deep architecture [42]. Shi et al. [43] utilized sparse opti-
mization to compress CapsNets via reducing unnecessary weight parameters and
computational cost. In our previous work, a residual pose routing [44] and a
disentangled-entangled routing mechanism [16] were proposed to speed up CapsNets.
In addition to CapsNets architectures, they have been introduced to a wide range of
applications. Jampour et al. [45] introduced a new regularization term into CapsNets
to improve the generalization for signature identification.Our previous works employed
CapsNets for part-whole relational visual saliency [32] and visual camouflage [46]. Wu
et al. [47] fed capsule features from multiple modalities into long short-term memory
for motion recognition.

In this paper, we apply CapsNets for multi-modal scene understanding by the pro-
posed PWRF framework. Different from [47] that utilized CapsNets to extract modal
capsules features instead of multi-modal fusion, we employ the part-whole relational
routing ability of CapsNets for multi-modal fusion stage.

3 Proposed Part-Whole Relational Fusion

In this section, we will describe the details of PWRF, which takes multi-modal fusion
as routing multiple individual part-level modalities to the fused whole-level modality.
The framework PWRF consists of two core components, including part-whole modal-
ity routing, and modal-shared and modal-specific details generation. We take triple
modalities as the case for illustration in the following.

3.1 Part-whole modality routing

To achieve primitive fusion of multiple modalities, we take each single modality and
the fused modality as a part-level modality and the whole-level modality, respectively,
which guides multi-modal fusion to the issue of routing multiple part-level modalities
to their whole-level modality. Leveraging the part-whole relational routing ability of
CapsNets [15], we implement the part-whole relational fusion. However, considering
the heavy computation demands of the original CapsNets [15], we use our previous
lightweight capsule routing version, called Disentangled Capsule Routing (DCR) algo-
rithm [16], as an alternative. In the following, we detail the PWRF framework using
DCR for routing part-level modalities to the whole-level modality, which is composed
by part-level modality capsules disentanglement and part-level to whole-level capsules
routing.
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3.1.1 Part-level modality capsules disentanglement

Part-level modality capsules disentanglement targets at disentangling the full-
resolution capsule features of each single modality to two orthogonal versions,
including horizontal and vertical capsules, which will transform two-dimensional
capsule routing to one-dimensional version with computation reduced greatly.

Given features
{
fni ∈ ℜHi×Wi×Ci | n ∈ {1, 2, 3} , i = 1, 2, 3, 4

}
from the backbone

network of ResNet-50 [48], where Hi ×Wi and Ci represent the resolution and chan-
nel of features at stage-i for modality n, respectively. Each single modality capsule,
including pose matrix pn

i and activation value an
i , can be constructed as follows:

pn
i ∈ ℜHi×Wi×Tp×16 = Conv (fni , dim = 3) ,

an
i ∈ ℜHi×Wi×Tp×1 = σ(Conv (fni , dim = 3)),

(1)

where Conv (∗, dim = 3) and σ refer to convolution and Sigmoid operations along the
3rd channel, respectively. T p is the type number of the part-level capsules. 16 and
1 represents the pose matrix dimension and activation value dimension, respectively.
The full-resolution capsules Pn

i is composed by

FPn
i ∈ ℜHi×Wi×Tp×17 = Concat(pn

i ,a
n
i , dim = 4). (2)

On top of the full-resolution capsules Pn
i , we disentangle the horizontal 1-

dimensional capsules as follows

Pn
i,H ∈ ℜHi×1×Tp×17 = Conv(FPn

i , dim = 2). (3)

Similarly, the vertical part-level capsules can be disentangled as

Pn
i,V ∈ ℜ1×Wi×Tp×17 = Conv(FPn

i , dim = 1). (4)

3.1.2 Part-level to whole-level capsules routing

The disentangled horizontal and vertical part-level modal capsules, Pn
i,H and Pn

i,V , will
be fed into the capsule routing algorithm [15] to find the whole-level modal capsules
via exploring part-whole relations.

Specifically, part-level capsules of multiple modalities are combined together, which
is achieved by concatenating horizontally part-level capsules of multiple modalities
and vertically part-level capsules of multiple modalities along the type dimension
separately, i.e.,

Pi,H ∈ ℜHi×1×(Tp+Tp+Tp)×17 = Concat
(
Pn

i,H

∣∣
n=1,2,3

, dim = 3
)
, (5)

Pi,V ∈ ℜ1×Wi×(Tp+Tp+Tp)×17 = Concat
(
Pn

i,V

∣∣
n=1,2,3

, dim = 3
)
, (6)

The horizontally and vertically whole-level modal capsules will be computed by
implementing capsule routing [15] on horizontally and vertically part-level modal
capsules separately as follows
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Wi,H ∈ ℜHi×1×Tw×17,Ri,H ∈ ℜ(Hi×1)×(Tp+Tp+Tp)×Tw

= Routing (Pi,H) , (7)

Wi,V ∈ ℜ1×Wi×Tw×17,Ri,V ∈ ℜ(1×Wi)×(Tp+Tp+Tp)×Tw

= Routing (Pi,V ) , (8)

where Routing (∗) represents the capsule routing algorithm [15].Ri,H andRi,V are the
routing coefficients from part-level modalities to the whole-level modal, which reveal
the familiar relations between the part-level modalities and the whole-level modality
along the horizontal and vertical dimensions, respectively. Wi,H and Wi,H are the
horizontal and vertical whole-level modalities, respectively.

On top of that, the full-resolution whole-level modal capsules can be achieved by
entangling them as follows

WPi ∈ ℜHi×Wi×Tw×17 = Wi,H ⊗Wi,V , (9)

where ⊗ represents the operation of matrix multiplication along the resolution
dimension.

3.2 Modal-shared and modal-specific details generation

3.2.1 Modal-shared details

The whole-level modalityWPi in Eq. (9) captures associations across different individ-
ual modalities, since it is computed by routing information from multiple modalities.
The generation of modal-shared details is a crucial step in the PWRF framework,
allowing the model to leverage information that is consistent across multiple modali-
ties. The modal-shared details are generated by aggregating features from all part-level
modalities through a part-whole relational routing mechanism. In light of this fact,
we treat it as the modal-shared semantic details.

3.2.2 Modal-specific details

The routing coefficients Ri,H and Ri,V in Eqs. (7) and (8) indicate the likelihood of
each part-level capsule belonging to each latent whole-level capsule class, which reveal
the contributions of different single part-level modalities to the whole-level modality,
respectively. Therefore, we model the modal-shared details for each modality using the
routing coefficients and each modalities capsules. First, the part-level correlations for
each modality can be extracted from the horizontal and vertical routing coefficients
Ri,H and Ri,V

Rn
i,H ∈ ℜHi×1×Tp

=
1

Tw

Tw∑
k=1

Ri,H [:, :, T p(n− 1) + 1 : T pn, k], n = 1, 2, 3, (10)

Rn
i,V ∈ ℜ1×Wi×Tp

=
1

Tw

Tw∑
k=1

Ri,V [:, :, T
p(n− 1) + 1 : T pn, k], n = 1, 2, 3, (11)
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where Rn
i,H and Rn

i,V represent the horizontal and vertical routing coefficients for each

part of the capsule corresponding to nth modality, respectively. The third dimension
of the routing coefficients is split into three parts, each of size T p.

Fig. 2: Visualization for the split of routing coefficients.

The horizontal and vertical modal-specific details can be computed via multiplying
the each part-level correlations and its capsule features

SPn
i,H ∈ ℜHi×1×Tp×17 = Pn

i,H ⊙ Rn
i,H , (12)

SPn
i,V ∈ ℜ1×Wi×Tp×17 = Pn

i,V ⊙ Rn
i,V , (13)

where ⊙ means element-wise multiplication. The full-resolution modal-specific details
are further computed by entangling SPn

i,H and SPn
i,V along the resolution dimension

as follows
SPn

i ∈ ℜHi×Wi×Tp×17 = SPn
i,H ⊗ SPn

i,V . (14)

It is noted that each modality specific details SPn
i is reshaped to SPn

i ∈
ℜHi×Wi×(Tp×17) by merging the last two dimensions together for the following uti-
lization. On top of that, modal-specific components SPn

i of multiple modalities are
integrated to get the merged modal-specific details as

SPi = ConvCate ((SPn
i ), dim = 3) , (15)

where ConvCate(∗) denotes the operation that combines concatenation and convolu-
tion operation along the specified dimension.

To make the entire routing process more intuitive, Fig. 2 visualizes the the process
of spliting the routing coefficients. As shown in Fig. 2, on top of the routing between
the high-level capsules and the low-level capsules, the routing coefficients are obtained.
In order to obtain the corresponding routing coefficients for the respective modalities,
the routing coefficients are split and averaged along the last dimension. The reshape
operation is gone through for subsequent processing.
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4 Multi-modal scene understanding using PWRF

In this section, we select two fundamental tasks, including SMM semantic segmen-
tation and VDT salient object detection, to explore the contributions of our PWRF
framework for multi-modal scene understanding.

4.1 SMM semantic segmentation

Fig. 3: SMM semantic segmentation framework based on PWRF. There are 4 stages
with different-scale features and outputs. It is noted that we use the same stage 1
as in [14] due to the heavy computation for DCR. In stages 2-4, our PWRF models
modal-shared and modal-specific details of different auxiliary modalities, which are
further integrated with the primary RGB modality. The outputs of four stages are fed
to Segformer head [49] for semantic segmentation.

To explore the contributions of our PWRF for SMM semantic segmentation, which
targets at segment semantic objects under the synthetic RGB-depth-event-LiDAR
condition, we plug our PWRF framework in the baseline [14]. As shown in Fig. 3, the
proposed PWRF based synthetic multi-modal semantic segmentation network con-
sists of four stages. In each stage, RGB and the remaining modalities are taken as the
primary and auxiliary modalities, respectively. For the primary RGB modality, the
Multi-Head Self-Attention (MHSA) [49] is used to extract deep features. For the aux-
iliary modalities, their fusion is solved by the proposed PWRF framework, on top of
which modal-shared and modal-specific details are further integrated via the designed
shared-specific interaction module. In the final, the primary RGB modality and the
integrated auxiliary modalities details are fed in the segmentation head [49] for seman-
tic segmentation. On top of the modal-shared and modal-specific details from PWRF,
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the shared-specific integration module will be illustrated in the following. In Fig. 3,
feature refine fusion module, parallel pooling mixer blocks, and token-select hub can
refer to [14], which are not detailed due to they being not our contributions.

4.1.1 Shared-specific Integration

In view of the complementary characteristic of modal-shared and modal-specific
cues with respect to the input, their primitive integration will benefit the semantic
exploration. To this end, we design a shared-specific integration module to combine
complementaries of modal-shared and modal-specific details for better semantic infer-
ence, which consists of two components, including primitive modal-specific details
generation and shared-specific interaction.

A. Primitive modal-specific details generation
In order to attenuate noise of each modal-specific information, primitive modal-

specific information is generated by using the original modality features fni and modal-
shared details Fi,shd as follows

F̂n
i,sp ∈ ℜHi×Wi×C = ConvCate ({fni ,SP

n
i } , dim = 3) , (16)

Fn
i,sp ∈ ℜHi×Wi×C = ConvCate ({Fi,shd,SP

n
i } , dim = 3) , (17)

where the modal-shared details, denoted as Fi,shd, are derived from reshaping the
whole-level modal capsules WPi. The primitive modal-shared details can be derived
as

Fn
i,psg ∈ ℜHi×Wi×C = σ

(
F̂n

i,sp

)
⊙ Fn

i,sp + Fn
i,sp. (18)

As such, a more primitive modal-specific information is achieved by combining
three single modalities together as follows

Fi,psg ∈ ℜHi×Wi×C = ConvCate
(
Fn

i,psg

∣∣
n=1,2,3

, dim = 3
)
. (19)

B. Shared-specific interaction
To integrate modal-shared and modal-specific details, we propose a shared-specific

interaction module. Besides modal-shared details Fi,shd and primitive modal-specific
details Fi,psg, we also employ the selected modal details of Self-Query Hub[14] denoted
as Fi,sqh. Specifically, three parallel branches are first designed to interact these three
components. Within each branch, one component is selected as the primary cue, while
the remaining two components are utilized to attend the primary cue for better seman-
tic exploration, which is achieved by a spatial attention and a channel attention. The
spatial attention is implemented as follows

SAi = σ
(
Conv(CGMP

(
CP1

i +CP2
i +CP3

i

)
, dim = 3)

)
, (20)

where CP1
i is the primary component. CP2

i and CP3
i are the remaining two com-

ponents. CGMP (∗) denotes the global max pooling operation performed along the
channel direction.
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The channel attention is implemented as

CAi = σ
(
Conv(GMP

(
CP1

i ⊙ SAi +CP1
i

)
, dim = 3)

)
, (21)

where GMP (∗) refers to the adaptive global max pooling operation.
Based on the spatial and channel attentions, the primary component can be

attended as
F1

i,ssi = CP1
i ⊙CAi +CP1

i . (22)

Doing Eqs. (20)-(22), we obtain the shared-specific interaction for each primary
component CPj

i , j = 1, 2, 3.
The interacted component Fi,ssi in three branches are integrated to get the merged

information using the element-wise multiplication and element-wise addition, which is
written as

Fu
i = ConvCate

({
⊗
{
Fj

i,ssi

}∣∣∣
j=1,2,3

, ⊕
{
Fj

i,ssi

}∣∣∣
j=1,2,3

})
, (23)

where ⊕ represents the element-wise addition.

4.1.2 Model training

On top of the fusion features Fu
i , we integrate it with the primary RGB modality using

the fusion step [14] to get the multi-modal fusion features, which is fed into the multi-
layer perception decoder [49] to predict the semantic result Pre. To train the model,
the online hard example mining cross-entropy loss function [50] is used to compute
the difference between the semantic predictions and the ground truth GT, i.e.,

Loss = OHEMCrossEntropyLoss(Pre,GT). (24)

4.2 VDT salient object detection

To explore the effectiveness of our PWRF for VDT salient object detection, we design
a network as shown in Fig. 4. To be concrete, Swin-Transformer [51] is utilized to
learn the backbone features of triple modalities, which are further fed in our PWRF
to get modal-shared and modal-specific semantics. After that, a stacking adjacent-
scale attention decoder is designed to integrate different-scale modal-shared/specific
semantics. The predictions of these two sub-decoders are combined to achieve the
final saliency map. The following will detail the Adjacent-Scale Attention (ASA) and
stacking ASA decoder.

4.2.1 Adjacent-scale attention

High-level features contain rich semantic information, encapsulating the overall prop-
erties of salient objects. In contrast, low-level features preserve edge details of salient
objects. To complement their superiority, we design an ASA module to integrate
adjacently high-level and low-level semantics for modal-shared and modal-specific in
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Fig. 4: VDT salient object detection framework based on PWRF. Swin-Transformer
[51] is utilized to learn the backbone features of triple modalities, which are further
fed in our PWRF to get modal-shared and modal-specific semantics. After that, a
stacking adjacent-scale attention decoder is designed to integrate different-scale modal-
shared/specific semantics. The predictions of these two sub-decoders are combined to
achieve the final saliency map.

Fig. 5: Adjacent-scale Attention Module, which is composed by three components,
including adjacent-scale integration, dual-branch attention, and selective aggregation.

Fig. 5, which is composed by three components, including adjacent-scale integration,
dual-branch attention, and selective aggregation.

Adjacent-scale integration. The adjacent-level modal-shared details (WPi−1

and WPi) and modal-specific details (SPi−1 and SPi) are integrated via

Fi−1,shd = WPi−1 ⊕WP′
i. (25)
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Fi−1,spc = SPi−1 ⊕ SPi
′. (26)

WP′
i and SP′

i can be obtained by

WP′
i = Bilinear (CBR (WPi)) , (27)

SP′
i = Bilinear (CBR (SPi)) , (28)

where CBR(·) and Bilinear represent the operations of (Convolution + BatchNorm
+ ReLU) and bilinear upsampling, respectively.

Dual-branch attention. A dual-branch attention including local attention and
global attention is designed to attend the informative regions. Specifically, the dual-
branch attention is achieved by

Fdba
i,shd = CBRCB (Fi,shd) +ACRC (Fi,shd) , (29)

Fdba
i,spc = CBRCB (Fi,spc) +ACRC (Fi,spc) , (30)

where CBRCB(·) is the local attention using (Convolution + BatchNorm + ReLU +
Convolution + BatchNorm). ACRC(·) is the global attention using (Average pooling
+ Convolution + ReLU + Convolution).

Selective aggregation. To address the feature discrepancy, a selective aggre-
gation strategy is designed to suppress redundant information and prevent feature
contamination. To this end, a gate signal mechanism is introduced to aggregate
adjacent-level modal-shared and modal-specific details, i.e.,

Fasa
i,shd = WP′

i ⊗ σ
(
Fdba

i,shd

)
+WPi−1 ⊗

(
1− σ

(
Fdba

i,shd

))
, (31)

Fasa
i,spc = SP′

i ⊗ σ
(
Fdba

i,spc

)
+ SPi−1 ⊗

(
1− σ

(
Fdba

i,spc

))
. (32)

4.2.2 Stacking ASA decoder

As illustrated in Fig. 4(b), we stack two sub-decoders composed by ASA to improve
the feature aggregation to produce saliency maps, which implement features aggrega-
tion following bottom-up and top-down flows. Specifically in the bottom-up process,
the ASA within each decoder progressively aggregates from high-level to low-level fea-
tures for both modal-shared and modal-specific, separately. The resulting aggregated
features Fasa

i,shd and Fasa
i,spc contribute to the generation of a preliminary saliency map.

Conversely, in the top-down process, the shallowest aggregated features of the first sub-
decoder are densely used to guide the second sub-decoder to learn primitive features.
By the way, edge cues are employed to enhance the depth feature maps by adjust-
ing their poor conditions. This process improves boundary refinement, allowing for
more accurate delineation of object edges and a better representation of spatial struc-
tures within the depth maps. Aggregated features of two sub-decoders are combined
to generate the final saliency prediction.
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4.2.3 Model training

The loss function L is defined as:

L =

5∑
i=1

(LB(Prei,GT) + LS(Prei,GT) + LI(Prei,GT)) , (33)

where LB , LS , and LI represent binary cross entropy loss [52], structural similarity
loss [53], and intersection-over-union loss [54], respectively. Prei represent the ith
predicted saliency map. GT is the Ground Truth.

4.3 Intermediate Visualization of PWRF

To get a more intuitive perception for the effectiveness of our PWRF, as shown in Fig.
6, modal-shared and primitive modal-specific features are visualized. In Fig. 6, modal-
shared knowledge can well capture the common details of three modalities while with
blurry boundaries. In contrast, modal-specific features complement to focus on object
shapes with clear boundaries. It is obvious for the necessity of integrating modal-shared
and modal-specific details for further decision.

Fig. 6: Visualization of modal-shared and primitive modal-specific features. Modal-
shared knowledge well capture the common details of three modalities. Modal-specific
features focus on different cues such as object shape.

5 Experiment and Analysis

In this section, we will discuss the experimental results of the proposed methods for
the tasks of SMM semantic segmentation and VDT salient object detection.

5.1 Datasets

DELIVER [14] is a large-scale dataset for synthetic multi-modal semantic seg-
mentation, including RGB, Depth, LiDAR, and Event, which was created using the
CARLA simulator. Each image resolution is 1042×1042. It contains 47,310 frames,
with 7,885 front-view samples divided to 3,983/2,005/1,897 samples for training/val-
idation/testing, respectively. The dataset introduces adverse conditions and sensor
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failure scenarios, such as environmental variations and partial sensor malfunctions,
which is a challenge for autonomous driving.

VDT-2048 dataset [38] consists of 2048 images with pixel-wise annotations
(ground truths) or VDT salient object detection. The dataset is divided into 1048
training images and 1000 testing images.

5.2 Implementation details

Multi-modal synthetic semantic segmentation. We conduct our SMM semantic
segmentation model trained on four A100 GPUs with an initial learning rate (LR) set
to 6e-5, using the poly strategy with a power of 0.9. The LR is adjusted to 0.1× the
original LR for the first 10 epochs for warming up. AdamW optimizer is chosen for
training with epsilon set to 1e-8 and weight decay set to 1e-2. Data augmentation tech-
niques include random resizing with a ratio ranging from 0.5 to 2.0, random horizontal
flipping, random color jittering, random Gaussian blurring, and random cropping.

VDT salient object detection. We conduct our VDT salient object detection
model trained on an RTX 3090 GPU. During the training process, we resize all training
images to 384 × 384 and apply data augmentation techniques such as random flip-
ping and clipping. The backbone network parameters are initialized with pre-trained
weights from the Swin-B network [55]. Adam optimizer is chosen to train the model
using a batchsize of 4 and an initial learning rate of 5e-5. The learning rate is decreased
by a factor of 10 every 80 epochs.

5.3 Evaluation Metrics

To quantitatively evaluate the performance on DELIVER [14], we select mIoU as the
metric, which is in accordance with the state-of-the-arts.

To quantitatively evaluate different saliency models on the VDT-2048 dataset, we
use 10 comprehensive evaluation metrics including S-measure (S) [56], Mean Abso-

lute Error (MAE) [57], various F-measure metrics [57] (Fmean
β , F adp

β ), and E-measure

metrics [58] (Emean
ξ , Eadp

ξ ). The mathematical definitions of all metrics are depicted
as follows,

MAE:

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|P(x, y)−G(x, y)|, (34)

where P(x, y) and G(x, y) predicted saliency map and ground truth respectively.
F-measure:

Fβ = (1 + β2) · Precision ·Recall

β2 · Precision+Recall
, (35)

where β2 is the parameter used to balance Precision and Recall.
E-measure:

Eξ =
1

W ×H

W∑
x=1

H∑
y=1

θ(x, y), (36)
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where θ represents the relation between predicted map and ground truth. H ×W is
the spatial resolution of the input.

S-measure:
S = αSo − (1− α)Sr, (37)

where So and Sr denote object-aware and region-aware structural similarity, respec-
tively. α is set to 0.5.

5.4 Comparison against the State of the Art

5.4.1 SMM semantic segmentation

Table 1 provides a comprehensive comparison between our approach and some State-
Of-The-Art (SOTA) methods, including HRFuser [13], SegFormer [49], TokenFusion
[11], CMX [28], and CMNeXt [14], on the DELIVER dataset [14]. Following [14], we
list evaluation values of different models on the validation set of DELIVER [14] in
Table 1. In Table 1, most cross-modal fusion approaches are beaten by the multi-modal
fusion methods. Besides, our model achieves the best IoU values over the multi-modal
fusion methods, which proves the superiority of our model over the other methods. To
be more concrete, the IoU value for each class are listed in Table 2. For more com-
prehensive comparison, we test our model and the SOTA multi-modal fusion method
CMNeXt [14] on the test set of the DELIVER dataset [14]. The mIoU values of our
model and CMNeXt [14] are 54.29% and 53%, respectively, which proves a significant
improvement of our model over the SOTA method.

Table 1: mIoU values of different models on DeLIVER
dataset [14].

Method Modal Backbone DeLIVER

HRFuser [13] RGB-D HRFormer-T [13] 51.88
TokenFusion [11] RGB-D MiT-B2 [49] 60.25
CMX [28] RGB-D MiT-B2 62.67
CMNeXt [14] RGB-D MiT-B2 [49] 63.58
HRFuser [13] RGB-E HRFormer-T [13] 42.22
TokenFusion [11] RGB-E MiT-B2 [49] 45.63
CMX [28] RGB-E MiT-B2 [49] 56.52
CMNeXt [14] RGB-E MiT-B2 [49] 57.48
HRFuser [13] RGB-Li HRFormer-T [13] 43.13
TokenFusion [11] RGB-Li MiT-B2 [49] 53.01
CMX [28] RGB-Li MiT-B2 56.37
CMNeXt [14] RGB-Li MiT-B2 [49] 58.04
HRFuser [13] RGB-D-E-Li HRFormer-T [13] 52.97
CMNeXt [14] RGB-D-E-Li MiT-B2 [49] 66.30

OURS RGB-D-E-Li MiT-B2 [49] 66.47

For more concrete analysis, we conduct a comparison against established multi-
modal fusion methodologies across varying conditions, including adverse weather and
partial sensor failure scenarios. As shown in Table 3, single-modal and cross-modal
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Table 2: IoU, F1, and Accuracy for Different
Classes in the DeLIVER dataset [14].

Class IoU (%) F1 (%) Accuracy (%)

Building 89.28 94.34 98.29
Fence 44.4 61.5 59.45
Other 0 0 0
Pedestrian 75.94 86.33 85.78
Pole 75.61 86.11 85.2
RoadLine 86.17 92.57 90.63
Road 98.33 99.16 98.94
SideWalk 80.87 89.43 96.11
Vegetation 89.17 94.28 93.92
Cars 88.8 94.07 98.57
Wall 64.45 78.38 88.45
TrafficSign 72.4 83.99 77.28
Sky 99.43 99.71 99.75
Ground 2.77 5.38 4.2
Bridge 51.22 67.74 59.4
RailTrack 54.38 70.45 73.97
GroundRail 48.82 65.61 50.14
TrafficLight 83.19 90.82 87.28
Static 33.04 49.67 34.98
Dynamic 34.29 51.07 49.79
Water 42.11 59.27 42.4
Terrain 84.52 91.61 93.79
TwoWheeler 75.83 86.25 87.12
Bus 92.69 96.21 95.95
Truck 93.97 96.89 96.89

Mean 66.47 75.63 73.93

Table 3: Results on adverse conditions in the DeLIVER dataset [14]. Sensor failure
cases are MB: Motion Blur; OE: Over-Exposure; UE: Under-Exposure; LJ: LiDAR-
Jitter; and EL: Event Low-resolution.

Model-modality Cloudy Foggy Night Rainy Sunny MB OE UE LJ EL Mean

HRFuser-RGB [13] 49.26 48.64 42.57 50.61 50.47 48.33 35.13 26.86 49.06 49.88 47.95
SegFormer-RGB [49] 59.99 57.30 50.45 58.69 60.21 57.28 56.64 37.44 57.17 59.12 57.20
TokenFusion-RGB-D [11] 50.92 52.02 43.37 50.70 52.21 49.22 46.22 36.39 49.58 49.17 49.86
CMX-RGB-D [14] 63.70 62.77 60.74 62.37 63.14 59.50 60.14 55.84 62.65 63.26 62.66
HRFuser-RGB-D-E-L [13] 56.20 52.39 49.85 52.53 54.02 49.44 46.31 46.92 53.94 52.72 52.97
CMNeXt-RGB-D-E-L [14] 68.70 65.67 62.46 67.50 66.57 62.91 64.59 60.00 65.92 65.48 66.30
PWRF-RGB-D-E-L 69.53 65.11 64.05 65.8 67.5 63.02 64.84 60.37 66.2 67.14 66.47

fusion methods exhibits limitations in adverse scenarios due to less auxiliary modal-
ities. Although multi-modal fusion methods, e.g., HRFuser [13] and CMNeXt [14],
obtain good performance, our model is superior on most adverse scenarios thanks to
the primitive fusion for multiple modalities.
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Table 4: Quantitative comparison results (%) of S, Fmean
β , F adp

β , Emean
ξ , Eadp

ξ , and
MAE on the VDT-2048 dataset. Here, “↑” (“↓”) means that the larger (smaller) the
better. The best three results in each column are marked in red, green, and blue,
respectively. Note: Red indicates the best performance in each metric.

Methods Type S ↑ MAE ↓ Eadp
ξ ↑ Emean

ξ ↑ F adp
β ↑ Fmean

β ↑

CPD [59] V 90.44 0.39 92.70 95.01 76.45 83.76
RAS [60] V 89.00 0.40 96.15 96.50 80.79 82.92

BBSNet [61] VD 91.17 0.46 87.47 93.57 69.57 82.67
DPANet [62] VD 72.26 1.92 53.28 72.22 29.19 48.52
RD3D [63] VD 90.95 0.47 83.54 92.31 64.62 81.20
SwinNet [55] VD 91.98 0.37 89.78 95.07 73.21 84.58
HRTransNet [64] VD 91.44 0.31 96.17 97.60 88.27 85.49
Ours VD 90.84 0.33 97.57 97.61 84.77 85.51

CGFNet [65] VT 91.66 0.33 93.19 94.47 78.22 84.80
CSRNet [53] VT 88.21 0.50 94.94 95.57 78.88 82.78
DCNet [66] VT 87.87 0.38 96.58 94.36 85.21 84.5
LSNet [67] VT 88.67 0.44 93.27 96.31 76.07 80.97
SwinNet[55] VT 93.70 0.26 94.44 97.46 80.90 88.87
HRTransNet[64] VT 92.81 0.26 96.80 98.09 84.46 87.59
Ours VT 92.85 0.26 98.65 98.43 89.02 89.45

HWSI [38] VDT 93.18 0.26 98.15 98.45 87.18 89.61
MFFNet [12] VDT 93.94 0.25 98.31 98.25 87.58 90.34

Ours VDT 93.27 0.23 98.84 98.52 90.17 90.38

Table 5: Quantitative results (%) in V challenges. Here, “↑” (“↓”) means that the
larger (smaller) the better. The best three results in each column are marked in red,
green, and blue, respectively.Note: Red indicates the best performance in each metric.

Method
V-BSO V-LI V-MSO V-NI V-SA V-SI V-SSO

S ↑ MAE ↓ E
adp
ξ ↑ F

adp
β ↑ S ↑ MAE ↓ E

adp
ξ ↑ F

adp
β ↑ S ↑ MAE ↓ E

adp
ξ ↑ F

adp
β ↑ S ↑ MAE ↓ E

adp
ξ ↑ F

adp
β ↑ S ↑ MAE ↓ E

adp
ξ ↑ F

adp
β ↑ S ↑ MAE ↓ E

adp
ξ ↑ F

adp
β ↑ S ↑ MAE ↓ E

adp
ξ ↑ F

adp
β ↑

BBSNet [61] 95.98 0.77 98.94 92.64 89.87 0.64 86.46 67.20 91.31 0.53 91.59 75.30 82.54 0.80 75.57 52.34 92.13 0.34 90.67 72.06 89.29 0.65 86.29 66.80 85.48 0.28 65.83 41.83
CGFNet [65] 95.96 0.71 99.19 93.77 90.35 0.46 93.63 77.55 91.18 0.49 94.77 80.20 88.40 0.35 86.93 68.57 92.10 0.30 92.90 76.67 91.19 0.43 93.53 77.84 84.21 0.12 79.42 56.03
CPD [59] 94.29 0.92 98.58 93.18 88.92 0.55 93.07 75.50 90.65 0.46 95.59 80.12 81.11 0.55 84.02 59.55 91.96 0.30 94.65 79.65 89.29 0.55 92.95 74.29 84.78 0.12 77.80 53.16
CSRNet [53] 90.94 1.39 96.15 89.85 87.73 0.58 95.72 79.34 85.98 0.89 94.14 79.40 85.89 0.43 92.29 72.60 86.15 0.47 95.11 75.69 86.71 0.78 94.15 77.77 81.89 0.14 83.10 56.74
DCNet [66] 94.52 0.82 99.06 94.44 87.10 0.48 97.04 84.13 88.11 0.54 98.00 85.11 82.42 0.38 92.07 78.35 89.60 0.32 98.26 83.79 88.55 0.47 98.17 85.46 77.40 0.12 92.66 72.01
DPANet [62] 77.27 4.18 93.12 69.80 71.93 2.15 54.10 29.53 71.82 2.64 58.67 31.95 63.14 2.55 44.28 20.84 71.13 1.66 45.61 21.45 71.07 2.21 52.63 27.37 62.04 1.08 30.16 5.97
LSNet [67] 94.90 0.99 98.94 92.58 87.47 0.57 94.05 75.98 88.98 0.60 94.45 78.60 81.76 0.52 87.92 63.91 88.48 0.40 93.83 76.77 86.21 0.64 94.05 74.97 79.43 0.18 76.55 51.17
RAS [60] 93.88 0.95 98.24 92.36 87.23 0.57 95.61 78.08 88.67 0.55 96.78 81.98 80.71 0.52 90.60 66.15 89.33 0.33 97.11 82.12 86.40 0.65 95.86 78.07 83.07 0.13 89.18 65.19
RD3D [63] 95.52 0.91 98.60 90.81 89.46 0.62 82.77 62.15 91.31 0.57 88.83 70.76 82.63 0.67 69.80 47.31 91.48 0.38 87.22 67.05 88.66 0.70 82.42 62.10 84.66 0.24 57.07 33.14
SwinNet(VD) [55] 96.39 0.68 99.17 93.62 90.60 0.48 90.03 72.24 91.57 0.48 92.53 76.79 84.84 0.52 81.23 59.70 93.69 0.28 92.20 75.56 89.90 0.54 90.58 72.69 86.13 0.24 66.73 42.93
SwinNet(VT) [55] 96.76 0.53 99.40 95.15 92.94 0.35 95.03 81.19 92.74 0.40 95.48 82.07 90.59 0.27 91.26 74.33 93.80 0.23 95.15 80.66 92.56 0.39 95.58 81.57 88.59 0.09 77.83 54.77
HRTrans(VD) [64] 95.72 0.64 99.26 94.63 90.43 0.42 96.42 81.57 91.24 0.42 96.91 83.39 83.98 0.42 92.16 69.74 92.40 0.25 97.37 84.25 89.81 0.49 96.52 81.45 84.63 0.12 85.45 61.91
HRTrans(VT) [64] 96.15 0.57 99.24 94.75 91.84 0.37 96.94 83.75 91.70 0.39 97.17 84.82 89.07 0.30 94.38 77.38 92.78 0.23 97.38 84.69 91.17 0.42 96.78 83.21 85.58 0.11 86.93 64.92
HWSI [38] 95.92 0.61 99.29 94.63 91.28 0.38 97.43 84.02 92.23 0.40 97.60 86.56 90.51 0.28 95.89 80.28 92.48 0.24 97.87 85.56 91.86 0.38 97.81 85.08 89.45 0.08 93.62 75.10
MFFNet [12] 96.43 0.57 99.37 95.28 92.33 0.35 98.12 86.00 93.22 0.41 98.14 87.29 91.12 0.26 97.17 82.17 93.76 0.22 97.61 85.88 92.28 0.37 98.17 86.07 90.70 0.07 93.51 74.25

Ours 96.19 0.51 99.43 95.96 92.63 0.32 98.86 88.43 92.34 0.36 98.91 89.32 89.93 0.25 97.13 84.97 93.66 0.20 99.18 89.24 91.35 0.38 98.76 87.78 88.97 0.07 97.13 81.34

5.4.2 VDT salient object detection

To evaluate the effectiveness of our PWRF for VDT salient object detection, we com-
pare it with 13 state-of-the-art approaches, including two RGB salient object detection
methods (CPD [59] and RAS [60]), three RGB-D salient object detection methods
(BBSNet [61], DPANet [62], and RD3D [63]), six RGB-T salient object detection
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Table 6: Quantitative results (%) in D challenges. Here, “↑” (“↓”) means that the
larger (smaller) the better. The best three results in each column are marked in red,
green, and blue, respectively.Note: Red indicates the best performance in each metric.

Method
D-BI D-BM D-II D-SSO

S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑

BBSNet [61] 90.67 0.46 86.07 67.12 90.27 0.41 86.87 68.43 92.74 0.46 91.91 77.23 85.48 0.28 65.83 41.83
DPANet [62] 70.68 1.89 49.05 24.17 72.26 1.82 55.24 32.07 76.65 2.06 65.92 44.05 62.04 1.08 30.16 5.97
RD3D [63] 90.31 0.46 81.78 61.80 90.76 0.44 82.94 63.97 92.89 0.52 89.08 73.35 84.66 0.24 57.07 33.14
SwinNet(VD) [55] 91.55 0.34 88.70 71.11 91.27 0.44 88.77 71.56 93.30 0.47 93.21 79.82 86.13 0.24 66.73 42.93
HRTrans(VD) [64] 90.92 0.29 95.74 80.87 90.81 0.32 95.84 80.91 93.03 0.36 97.37 86.49 84.63 0.12 85.45 61.91
HWSI [38] 92.86 0.23 98.05 86.55 92.85 0.29 97.73 85.86 94.17 0.35 98.43 89.20 89.45 0.08 93.62 75.10
MFFNet [12] 93.64 0.23 98.14 86.76 93.27 0.26 98.23 86.63 94.61 0.32 98.73 89.94 90.47 0.07 93.51 74.25

Ours 92.98 0.22 98.83 89.59 92.66 0.25 98.36 89.11 94.18 0.29 98.86 91.93 88.97 0.07 97.13 81.34

Table 7: Quantitative results (%) in T challenges. Here, “↑” (“↓”) means that the
larger (smaller) the better. The best three results in each column are marked in red,
green, and blue, respectively.Note: Red indicates the best performance in each metric.

Method
T-Cr T-HR T-RD

S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑ S ↑ MAE ↓ Eadp
ξ ↑ F adp

β ↑

CGFNet [65] 90.10 0.34 91.03 74.04 95.23 0.29 96.72 83.39 93.02 0.46 97.61 85.50
CSRNet [53] 84.53 0.50 92.75 73.69 93.74 0.33 98.12 89.14 89.81 0.61 97.76 84.97
DCNet [66] 85.82 0.39 95.10 81.97 93.05 0.31 98.94 89.95 90.38 0.51 98.33 88.76
LSNet [67] 88.08 0.42 91.37 73.25 90.95 0.43 95.67 79.60 90.11 0.64 96.97 81.73
SwinNet(VT) [55] 92.63 0.26 92.53 77.18 96.08 0.21 97.69 85.98 94.34 0.37 98.01 87.43
HRTrans(VT) [64] 91.30 0.27 95.42 81.13 94.82 0.22 98.67 87.88 93.92 0.38 98.69 88.47
HWSI [38] 92.53 0.25 97.44 84.92 94.70 0.26 99.02 89.04 93.24 0.40 99.01 89.10
MFFNet [12] 92.87 0.23 97.49 84.90 96.02 0.19 99.03 90.26 93.36 0.37 98.95 89.82

Ours 91.90 0.23 97.85 87.91 95.29 0.19 99.43 92.20 93.70 0.35 99.22 91.29

methods (CGFNet [65], CSRNet [53], DCNet [66], and LSNet [67], SwinNet [55], and
HRTransNet [55]), and two VDT salient object detection methods (HWSI [38] and
MFFNet [12]). To ensure fair comparisons, all model predictions are either provided
by the authors or generated using their source codes with default settings.

As shown in Table 4, three findings can be easily concluded: i) Compared with the
RGB methods, most cross-modal methods achieve better performance, which is owing
to the complementaries of depth and thermal modalities; ii) Compared with the V-D
and V-T approaches, VDT methods both get higher metric values, which thanks to the
complementary of triple modalities; iii) Compared with the previous VDT methods,
our method achieves consistently superior performance for five best evaluation metrics,
which owes to the superior multi-modal fusion of PWRF over the previous simple
fusion mechanisms. To be more concrete, compared to the second-best model, MFFNet
[12], our model achieves significant improvements. Besides, our framework on cross-
modal settings, including VD and VT, consistently achieves superior performance,
which can be found from the second and third brackets in Table. 4, where our model
on VD and VT conditions outperforms better than the other methods.

In addition, to demonstrate the robustness of our method in handling challeng-
ing scenarios, we present the performance comparison for visible-challenge, depth-
challenge, and thermal-challenge scenes in Table 5, Table 6, and Table 7, respectively.
For the challenging scenarios, our method still achieves a superior performance.

20



5.5 Visual comparison

5.5.1 SMM semantic segmentation

To visually demonstrate the performance of different models for SMM semantic
segmentation, we selected two representative scenarios for comparison: “Cloud &
Underexposure” and “Rainy & LiDAR Jitter”. As shown in Fig. 72, compared with
the single-modal method SegFormer [49], multi-modal fusion methods provide more
accurate semantic analysis. Moreover, compared with the multi-modal fusion method
CMNeXt [14], our method benefits from the Part-Whole Relational Fusion (PWRF)
framework, resulting in more complete object segmentation in complex scenarios.

Fig. 7: Visual comparison for SMM semantic segmentation.

5.5.2 VDT salient object detection

To visually demonstrate the superiority of our model, we present several visualization
results from challenging scenes across visible, depth, and thermal images. Specifically,
V-challenges include big salient object (BSO), low illumination (LI), multiple salient
objects (MSO), no illumination (NI), similar appearance (SA), side illumination (SI),
and small salient object (SSO). D-challenges contain background interference (BI),
background messy (BM), incomplete information (II), and small salient object (SSO).
T-challenges cover crossover (Cr), heat reflection (HR), and radiation dispersion (RD).
As shown in Fig. 8(a), (b), and (c), the proposed model well tackles these challenging
scenes for salient object detection, compared with the other methods.

5.6 Ablation study

5.6.1 Ablation analysis for SMM semantic segmentation

In this subsection, we will conduct ablation experiments on DELIVER [14] to evaluate
the contributions of key components of the SMM semantic segmentation model.

2The values of semantic labels are scaled via ×10 for visualization in Fig. 7.
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(a) Visual comparison of V-challenge.

(b) Visual comparison of D-challenge.

(c) Visual comparison of T-challenge.

Fig. 8: Visual comparison of V-challenge, D-challenge, and T-challenge scenes for
VDT salient object detection.

Different number of capsule types for PWRF. Capsule type number takes a
vital role in part-whole relations exploration, which will affect the performance of the
whole model. To take a thorough study on different number of capsule types, we run
several rounds with different part-level capsule types3. As shown in Table 8, it is seen
that few or more capsules will lower the performance, because few capsules cannot
find the accurate part-whole relations while more capsules will introduce noisy capsule
assignments. By contrast, 8 types achieve the best IoU value, which is the setting for
our model in this paper.

Shared parameters. Since there are multiple stages, our PWRF architecture
should be repeated multiple times for different modality branch, which generates multi-
branch structures. To discuss parameters sharing for these consistent structures, we
carry out experiments using shared and unshared parameters for the model. As listed

3The whole-level capsule types number is set to the category number for different datasets.
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in the last two columns of Table 8, shared parameters improve the semantic segmenta-
tion performance compared with the unshared setting. The reason behind comes from
three folds: i) Shared parameters reduce some noise caused by the modality gap; ii)
Shared parameters learn consistent fusion trend for different modalities; iii) By shar-
ing structures and parameters, data from different modalities can assist each other to
enhance the understanding of the same scenario.

Table 8: Ablation study for different capsule
types and parameters sharing on DeLIVER
dataset [14].

Primary Caps mIoU (Shared) mIoU (Unsahred)
4 64.50 63.68
8 66.47 64.55
16 63.50 62.65
25 64.50 63.51

5.6.2 Ablation analysis for VDT salient object detection

In this subsection, we conduct ablation experiments on VDT-2048 dataset to evaluate
the contributions of key modules in our proposed method.

Table 9: Ablation analysis (%) on our baseline gradually including the newly proposed
components on the VDT-2048 dataset [38].

Component S ↑ MAE ↓ Eadp
ξ ↑ Emean

ξ ↑ F adp
β ↑ Fmean

β ↑
(a) Baseline 88.57 0.57 90.41 90.96 76.59 77.24
(b) + PWRF 92.24 0.28 98.37 98.31 87.35 88.37
(c) + Stacking ASA deocder 90.14 0.41 94.91 95.48 84.03 84.36
(d) +PWRF + Stacking ASA deocder 93.27 0.23 98.84 98.52 90.17 90.38

Different components. To verify the effectiveness of different components in
our proposed method, we perform various ablation experiments in Table 9. First,
comparing (a) & (b) and (a) & (c) in Table 9, the proposed PWRF and stacking ASA
decoder significantly boost the performance. The performance improvements come
from two aspects: i) PWRF dynamically captures the informative semantics from
different modalities for fusion; ii) Stacking ASA decoder helps to extract the primitive
context of different modalities for prediction. Secondly, comparing (b) & (d) and (c) &
(d) in Table 9, the combination of PWRF and stacking ASA decoder achieves a higher
performance, which proves the contributions of the proposed components efficiently.

Different fusion mechanisms. In order to investigate the contribution of our
PWRF for triple-modal fusion, we carry out several experiments by replacing our
PWRF with different fusion mechanisms, including addition, concatenation, QKV
attention mechanisms and EM routing [15] in our VDT salient object detection model.
As shown in Table 10, there are two findings: i) Our PWRF surpasses the simple addi-
tion and concatenation mechanisms due to the primitive fusion for multiple modalities;
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ii) Compared with the attention mechanism, our model still achieves a significant
superiority; iii) Our PWRF outperforms the previous EM routing [15] with a large
margin, which demonstrates the superiority of DCR routing in our PWRF for VDT
salient object detection.

Table 10: Ablation study (%) on different triple-modal fusion strategies on the
VDT-2048 dataset [38].

Settings S ↑ MAE ↓ Eadp
ξ ↑ Emean

ξ ↑ Fadp
β ↑ Fmean

β ↑
Addition 91.72 0.32 95.96 96.82 85.98 87.14

Concatenation 90.14 0.41 94.17 95.48 80.31 84.36
QKV Attention 91.08 0.36 95.03 96.02 84.72 86.39

Concatenation + EM routing 71.59 1.04 82.57 87.13 33.88 52.67
Ours(PWRF) 93.27 0.23 98.84 98.52 90.17 90.38

Stacking ASA decoder. Stacking ASA decoder contains two sub-decoders using
a bridge connection. To deeply dig into its contribution, we conduct experiments
including baseline by removing stacking ASA decoder from the entire model, one sub-
decoder, and two sub-decoders. As shown in Table 11, compared with baseline, one
sub-decoder definitely improves the performance, which is because ASA emphasizes
semantic feature channels while suppressing noisy ones. In addition, compared with
one sub-decoder, stacking two sub-decoders performs better, which proves the bridge
connection of two sub-decoders helps the model to get the superior performance.

Table 11: Ablation analysis (%) for stacking ASA decoder on the VDT-2048 dataset
[38].

No Settings S ↑ MAE ↓ Eadp
ξ ↑ Emean

ξ ↑ F adp
β ↑ Fmean

β ↑
1 Baseline + PWRF 92.24 0.28 97.74 98.31 87.11 88.37
2 Baseline + PWRF + one sub-decoder 92.47 0.26 97.92 98.33 87.95 88.73
3 Baseline + PWRF + two sub-decoders 93.27 0.23 98.84 98.52 90.17 90.38

Ablation analysis on different modalities. To assess the impact of different
modalities, we conduct four experiments detailed in Table 12, focusing on modalities
combinations such as V+D, V+T, D+T, and V+D+T. Our PWRF method neces-
sitates utilizing at least two distinct features from each modality, hence experiments
on individual modalities were omitted. Moreover, for experiments involving combina-
tions like V+D, V+T, and D+T, we simply removed one capsule feature branch while
keeping other operations unchanged. From Table 12, it is evident that V+T obtains
good performance compared with V+D and D+T. Leveraging three modalities pre-
fer to improve the performance significantly, which demonstrates the superiority of
more-modal fusion over cross-modal fusion.

5.6.3 Routing coefficients explanation

Most previous methods cannot interpret the fusion of different modalities, which lim-
its their reliability in real-world applications. In contrast, our model can provide an
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Table 12: Ablation study (%) on different modalities on the VDT-2048
dataset [38].

No Settings S ↑ MAE ↓ Eadp
ξ ↑ Emean

ξ ↑ Fadp
β ↑ Fmean

β ↑
1 V+D 90.84 0.33 97.57 97.61 84.77 85.51
2 V+T 92.85 0.26 98.65 98.43 89.02 89.45
3 D+T 90.21 0.35 97.88 97.79 84.30 84.68
4 V+D+T 93.27 0.23 98.84 98.52 90.17 90.38

explanation for multi-modal fusion due to the part-whole relational routing from part-
level modalities to whole-level modal. Specifically, we plot the horizontal and vertical
routing coefficients for one pixel in Fig. 9, in which higher routing values represent
higher contribution of single modalities for fusion. In Fig. 9, we observe differences
in the contributions from each modality under horizontal and vertical routing condi-
tions. The x-axis, y-axis, and z-axis represent the part-level capsule types, whole-level
capsule types, and routing coefficients, respectively. For example, as shown in the red
rectangle of Fig. 9(a) in terms of the horizontal dimension, from the 8th part-level cap-
sule to the first whole-level capsule, depth and event modalities contribute much for
fusion, while LiDAR contributing less, which explains that depth and event modali-
ties occupies much for semantic understanding while LiDAR has no roles at this pixel.
By contrast, in the vertical direction at the pixel, other modalities might dominate.
Such differences could be due to the unique characteristics captured by each modality
in different spatial dimensions. These directional differences in contribution help cap-
ture complementary information from different modalities, thus enhancing the feature
fusion.

(a) Horizontal routing coefficients. (b) Vertical routing coefficients.

Fig. 9: Explanation using the routing coefficients. Red, blue, and green markers rep-
resent the routing coefficients of depth, event, and LiDAR modalities. x-axis, y-axis,
and z-axis denote whole-level capsules types, part-level capsule types, and routing val-
ues, respectively.
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6 Limitations and Future Works

6.1 Limitations

Complexity and Resource Requirements. The proposed PWRF framework
involves routing operations in CapsNets as well as multi-modal data fusion. Despite
utilizing the lightweight DCR [16] mechanism, the framework still has high computa-
tional complexity and resource demands, especially when processing high-resolution
and large-scale multi-modal data. This could limit its application in resource-
constrained environments.

Alignment and Noise in Multi-Modal Data. Multi-modal sensors often suf-
fer from spatial and temporal misalignment, and certain modalities (e.g., depth and
event data) tend to contain significant noise. Although PWRF employs CapsNets to
extract both modal-shared and modal-specific information, these issues have not been
entirely addressed in the current implementation, which could negatively impact the
overall quality of the results. Additionally, the current usage of attention mechanisms
in the framework is relatively preliminary, and there is significant potential for fur-
ther integration to improve feature selection and noise reduction, thereby enhancing
robustness and the ability to capture critical information.

Adaptability and Generalization. While PWRF has demonstrated notable
performance in applications such as autonomous driving and multi-modal object
detection, its adaptability and generalization capabilities for other domains, such as
multi-modal emotion recognition [68] and medical imaging analysis [69], have not been
to be thoroughly evaluated. The effectiveness of the framework in these new domains
remains an open problem for future research.

6.2 Future Work

Lightweight for Real-Time Optimization. We intend to further optimize the
computational complexity of PWRF by exploring new lightweight architectures or
combining them with attention mechanisms [70, 71] to achieve higher performance in
resource-limited environments, thus making the framework more suitable for real-time
applications.

Expansion to More Application Scenarios. We intend to extend the PWRF
framework to other multi-modal tasks, such as emotion recognition [68] and medical
imaging analysis [69]. Through experimentation in these new tasks, we hope to val-
idate the generalizability of the model and improve its performance across different
industries and applications.

7 Conclusion

In this article, we have presented a novel multi-modal fusion model from the perspec-
tive of part-whole relational fusion, which treated multi-modal fusion as routing each
individual part-level modality to the fused whole-level modality. Using disentangled
capsule routing, we modeled the modal-shared and modal-specific details for primitive
fusion. Experiments on SMM semantic segmentation and VDT salient object detec-
tion demonstrate the superiority of the proposed PWRF framework for multi-modal
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scene understanding. In the future, we will study more primitive capsule routing for
part-whole relational fusion and fusion explainability for reliable applications.
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